

Applications of quantum transport in devices

Gerhard Klimeck

Jet Propulsion Laboratory, California Institute of Technology

gekco@jpl.nasa.gov, 818-354-2182 http://hpc.jpl.nasa.gov/PEP/gekco

Application of Quantum Transport in Devices

- What is the focus of the research?
 - Quantum Transport
 - => Devices/Structures are a tool to explore the needed theory
 - Relevant Theories:
 Green Functions, Wigner Functions, Rate Equations
 - Relevant Structures: quantum dots/wires, molecules, RTDs (for time dependence only)
 - Devices / Applications
 - => Quantum transport is a tool to design/optimize devices
 - Relevant devices: super-scaled FETs, RTDs, Esaki diodes
 - Need quantitative agreement between experiment and theory
 - •DC, high bias performance
 - •AC / time-dependent high bias performance
 - Need realistically sized devices contacts/reservoirs.
 - Need realistic electron interactions with environment: phonons, light, bandstructure.

Quantitative Modeling of Devices

Quick review of DC transport simulations in RTDs - NEMO 1-D

- Realistic contacts:
 - Quantized and continuous states in the emitter
- Realistic bandstructure:
 - Band-non parabolicity emitter states and RTD state alignment
- Putting it together:
 - Valley current at high temperatures due to bandstructure effects (thermionic emission)
 - Bistability (in symmetric structures) a numerical problem due to limited device models
 - Test matrix comparison to experiment

Realistic Devices have Extended Contacts

Band non-parabolicity modifies momentum dependence in emitter-RTD coupling

Density of States (k_x=0.00)

Density of States (k_x=0.03)

Resonance coupling depends on the transverse momentum

Full Band Simulation of Electron Transport

- 1D integration assuming parabolic subbands can lead to unphysical current overshoots.
- •2 Examples on InGaAs/InAlAs simulations:
 - Sp3s* simulation with partial charge self-consistency
 sharp spike at turn-off
 - Parameterized single band simulation which incorporates the band-non-parabolicity
 - -> overall current overshoot.
- -> 2D integration with good bandstructure fixes these unphysical results.

Spurious Bistability: More Physics -> Better results Full band integration + Exchange&Correlation

- Calculate the exchange and correlation potential in LDA.
- Exchange and correlation energy does not eliminate (in general) the bistability, it does reduce it however.
- Inclusion of scattering in the simulation reduces the bistability region as well.

Scattering also reduces the numerical bi-stability

Current Model:

 self-consistent elastic and single tridiagonal POP scattering

Potential Models: Hartree self-consistency

- no scattering
- selfconsistent elastic and tridiagonal POP scattering

Compare forward to reverse bias sweep:

- Scattering reduces the width of the bistability region.
- not shown: inclusion of exchange correlation does not change the width of the bistability in this device.

Testmatrix-Based Verification (room temperature) Strained InGaAs/AIAs 4 Stack RTD with Asymmetric Barrier Variation

Vary One Barrier Thickness

asymmetric devices: 20/50/20 Angstrom 20/50/23 Angstrom 20/50/25 Angstrom 20/50/27 Angstrom

Four increasingly

Tow Temperature: Polar Optical Phonon and Interface Roughness Scattering

scattering raises valley current by several orders of magnitude

JPL

Nano-scale Device Analysis / Synthesis

Development of a Bottom-Up Nanoelectronic Modeling Tool (NEMO-3D)

New Devices for Sensing and Computing

Analyze Devices: Environment and Failures

Assertions / Problems:

- Nanoscale structures are built today!
 The design space is huge: choice of materials, compositions, doping, size, shape
- Radiation on today's sub-micron devices modifies the electronics on a nanoscale.

Approach:

- Deliver a 3-D atomistic simulation tool
- Enable analysis of arbitrary crystal structures, particles, atom compositions and bond/structure at arbitrary temperatures and ambient electric and magnetic fields.

Collaborators:

 U. of Alabama, Ames, Purdue, Ohio State, NIST

NASA Relevance:

- Enable new devices needed for NASA missions beyond existing industry roadmap:
 - Water detection -> 2-5μm Lasers and detectors.
 - Avionics -> High density, low power computing.
- Analyze state-of-the-art devices for noncommercial environments:
 - Europa -> Radiation and low temperature effects. Aging and failure modes.
 - Jovian system -> Magnetic field effects
 - Venus -> high temperature materials: SiGe

Impact:

• Low cost development of revolutionary techn.

Gerhard Klimeck

Modeling will narrow the empirical search space

Speakers in the Program

- Carlo Jacoboni,
 Modena University,
 "The Wigner function and quantum transport"
- Harold Grubin,
 SRA, Inc.,
 "Modeling resonant tunneling diodes with Wigner functions and density matrices"
- Dejan Jovanovic,
 Motorola,
 "Non-equilibrium Green's functions for MOSFET modeling"

Applications of quantum transport in devices

Gerhard Klimeck

Jet Propulsion Laboratory, California Institute of Technology

gekco@jpl.nasa.gov, 818-354-2182 http://hpc.jpl.nasa.gov/PEP/gekco

Application of Quantum Transport in Devices

- What is the focus of the research?
 - Quantum Transport
 - => Devices/Structures are a tool to explore the needed theory
 - Relevant Theories:
 Green Functions, Wigner Functions, Rate Equations
 - Relevant Structures: quantum dots/wires, molecules, RTDs (for time dependence only)
 - Devices / Applications
 - => Quantum transport is a tool to design/optimize devices
 - Relevant devices: super-scaled FETs, RTDs, Esaki diodes
 - Need quantitative agreement between experiment and theory
 - •DC, high bias performance
 - •AC / time-dependent high bias performance
 - Need realistically sized devices contacts/reservoirs.
 - Need realistic electron interactions with environment: phonons, light, bandstructure.

Quantitative Modeling of Devices

Quick review of DC transport simulations in RTDs - NEMO 1-D

- Realistic contacts:
 - Quantized and continuous states in the emitter
- Realistic bandstructure:
 - Band-non parabolicity emitter states and RTD state alignment
- Putting it together:
 - Valley current at high temperatures due to bandstructure effects (thermionic emission)
 - Bistability (in symmetric structures) a numerical problem due to limited device models
 - Test matrix comparison to experiment

Realistic Devices have Extended Contacts

Band non-parabolicity modifies momentum dependence in emitter-RTD coupling

Density of States (k_x=0.00)

Density of States (k_x=0.03)

Resonance coupling depends on the transverse momentum

Full Band Simulation of Electron Transport

- 1D integration assuming parabolic subbands can lead to unphysical current overshoots.
- •2 Examples on InGaAs/InAlAs simulations:
 - Sp3s* simulation with partial charge self-consistency
 sharp spike at turn-off
 - Parameterized single band simulation which incorporates the band-non-parabolicity
 overall current overshoot.
- -> 2D integration with good bandstructure fixes these unphysical results.

Spurious Bistability: More Physics -> Better results Full band integration + Exchange&Correlation

- Calculate the exchange and correlation potential in LDA.
- Exchange and correlation energy does not eliminate (in general) the bistability, it does reduce it however.
- Inclusion of scattering in the simulation reduces the bistability region as well.

Scattering also reduces the numerical bi-stability

Current Model:

 self-consistent elastic and single tridiagonal POP scattering

Potential Models: Hartree self-consistency

- no scattering
- selfconsistent elastic and tridiagonal POP scattering

Compare forward to reverse bias sweep:

- Scattering reduces the width of the bistability region.
- not shown: inclusion of exchange correlation does not change the width of the bistability in this device.

Testmatrix-Based Verification (room temperature) Strained InGaAs/AlAs 4 Stack RTD with Asymmetric Barrier Variation

Vary One Barrier Thickness

Four increasingly asymmetric devices: 20/50/20 Angstrom 20/50/23 Angstrom

20/50/25 Angstrom

20/50/27 Angstrom

Presented at IEEE DRC 1997

Tow Temperature: Polar Optical Phonon and Interface Roughness Scattering

JPL

Nano-scale Device Analysis / Synthesis

Development of a Bottom-Up Nanoelectronic Modeling Tool (NEMO-3D)

New Devices for Sensing and Computing

Analyze Devices: Environment and Failures

Assertions / Problems:

- Nanoscale structures are built today!
 The design space is huge: choice of materials, compositions, doping, size, shape
- Radiation on today's sub-micron devices modifies the electronics on a nanoscale.

Approach:

- Deliver a 3-D atomistic simulation tool
- Enable analysis of arbitrary crystal structures, particles, atom compositions and bond/structure at arbitrary temperatures and ambient electric and magnetic fields.

Collaborators:

 U. of Alabama, Ames, Purdue, Ohio State, NIST

NASA Relevance:

- Enable new devices needed for NASA missions beyond existing industry roadmap:
 - Water detection -> 2-5μm Lasers and detectors.
 - Avionics -> High density, low power computing.
- Analyze state-of-the-art devices for noncommercial environments:
 - Europa -> Radiation and low temperature effects. Aging and failure modes.
 - Jovian system -> Magnetic field effects
 - Venus -> high temperature materials: SiGe

Impact:

• Low cost development of revolutionary techn.

Speakers in the Program

- Carlo Jacoboni,
 Modena University,
 "The Wigner function and quantum transport"
- Harold Grubin,
 SRA, Inc.,
 "Modeling resonant tunneling diodes with Wigner functions and density matrices"
- Dejan Jovanovic,
 Motorola,
 "Non-equilibrium Green's functions for MOSFET modeling"